The documentations and process conversion measures necessary to comply with this revision shall be completed by 9 August 2014.

INCH-POUND

MIL-PRF-19500/676F 9 May 2014 SUPERSEDING MIL-PRF-19500/676E 13 December 2013

PERFORMANCE SPECIFICATION SHEET

SEMICONDUCTOR DEVICE, FIELD EFFECT RADIATION HARDENED TRANSISTORS, N-CHANNEL, SILICON, TYPES 2N7465T3 AND 2N7466T3 AND U3 SUFFIXES, JANTXVR AND JANSR

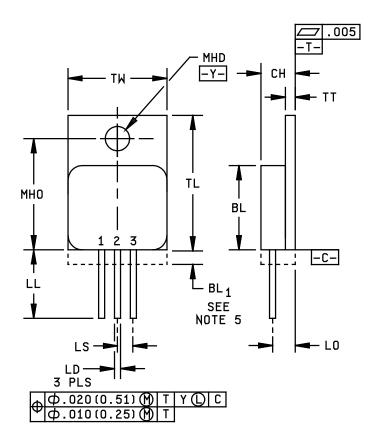
This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of this specification sheet and MIL-PRF-19500.

1. SCOPE

- 1.1 <u>Scope</u>. This specification covers the performance requirements for an N-channel, enhancement-mode, MOSFET, radiation hardened, power transistor. Two levels of product assurance are provided for each device type as specified in MIL-PRF-19500, with avalanche energy maximum rating (E_{AS}) and maximum avalanche current (I_{AS}).
 - 1.2 Physical dimensions. See figure 1, TO-257AA and figure 2 (U3, TO-276AA).
 - 1.3 Maximum ratings. Unless otherwise specified, $T_A = +25$ °C.

Туре	P _T (1) T _C = +25°C	P _T $T_A = +25^{\circ}C$ (free air)	R _θ JC (2)	V _{DS}	V _{DG}	VGS	I _{D1} (3) (4) T _C = +25°C	I _{D2} (3) (4) T _C = +100°C	Is	^I DM (5)	T _J and TSTG	VISO 70,000 foot altitude
	<u>W</u>	<u>W</u>	<u>°C/W</u>	V dc	V dc	V dc	A dc	A dc	A dc	A(pk)	<u>°C</u>	<u>V dc</u>
2N7465T3, U3 2N7466T3, U3	75 75	2 2	1.67 1.67	400 500	400 500	±20 ±20	5.0 4.4	3.2 2.8	5.0 4.4	20 17.6	-55 to +150	400 500

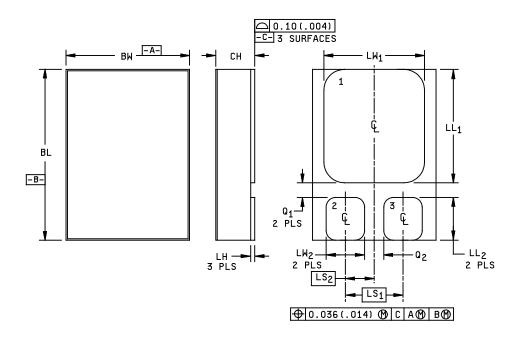

- (1) Derate linearly 0.6 W/°C for $T_C > +25$ °C.
- (2) See figure 3, thermal impedance curves.
- (3) The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may be limited by pin diameter:

$$I_D = \sqrt{\frac{T_{JM} - T_C}{\left(R_{\theta JC} \right) x \left(R_{DS} \left(\text{ on } \right) \text{ at } T_{JM} \right)}}$$

- (4) See figure 3, maximum drain current graphs.
- (5) $I_{DM} = 4 \times I_{D1}$ as calculated in note (3).

Comments, suggestions, or questions on this document should be addressed to DLA Land and Maritime, ATTN: VAC, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to Semiconductor@dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at https://assist.dla.mil.

AMSC N/A FSC 5961



Ltr	Inch	nes	Millin	neters			
	Min	Max	Max Min				
BL	.410	.430	10.41	10.92			
BL ₁		.033		0.84			
СН	.190	.200	4.83	5.08			
LD	.025	.035	0.64	0.89			
LL	.600	.650	15.24	16.51			
LO	.120	BSC	3.05 BSC				
LS	.100 l	BSC	2.54 BSC				
MHD	.140	.150	3.56	3.81			
МНО	.527	.537	13.39	13.64			
TL	.645	.665	16.38	16.89			
TT	.035	.045	0.89	1.14			
TW	.410	.410 .420 10.41					
Term 1		Dra	ain				
Term 2	Source						
Term 3	Gate						

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. All terminals are isolated from the case.
- 4. This area is for the lead feed-thru eyelets (configuration is optional, but will not extend beyond this zone).
- 5. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1. Physical dimensions for TO-257AA (2N7465T3 and 2N7466T3).

Symbol		Dimensions								
	Inche	S	Millimeters							
	Min	Max	Min	Max						
BL	.395	.405	10.04	10.28						
BW	.291	.301	7.40	7.64						
CH		.124		3.15						
LH	.010	.020	0.25	0.51						
LW1	.281	.291	7.14	7.39						
LW2	.090	.100	2.29	2.54						
LL1	.220	.230	5.59	5.84						
LL2	.115	.125	2.93	3.17						
LS1	.150 B	SC	3.8	1 BSC						
LS2	.075 B	SC	1.9	1 BSC						
Q1	.030		0.76							
Q2	.030		0.76							
TERM 1		Drain								
TERM 2		Ga	te							
TERM 3		Sou	rce							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 2. Physical dimensions for TO-276AA (2N7465U3 and 2N7466U3).

1.4 Primary electrical characteristics at $T_c = +25^{\circ}C$.

Туре	Min V(BR)DSS VGS = 0	$V_{GS(TH)1}$ $V_{DS} \ge V_{GS}$ $I_{D} = 1.0$		$Max I_{DSS1}$ $V_{GS} = 0$ $V_{DS} = 80$	Max r _{DS}		E _{AS} at I _{D1}	I _{AS}
	I _D = 1.0 mA dc	mA	dc	percent of rated V _{DS}	T _J = +25°C T _J = +150°C			
	ma de			iaica v _{DS}	at I _{D2}	at I _{D2}		
	<u>V dc</u>	V	dc	μA dc	<u>ohm</u>	<u>ohm</u>	<u>mJ</u>	<u>A</u>
		Min	Max					
2N7465T3, U3 2N7466T3, U3	400 500	2.5 2.5	4.5 4.5	50 50	1.39 1.77	3.0 3.9	150 150	5.0 4.4

(1) Pulsed (see 4.5.1).

2. APPLICABLE DOCUMENTS

* 2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3 and 4 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-750 - Test Methods for Semiconductor Devices.

- * (Copies of these documents are available online at http://quicksearch.dla.mil/
- 2.3 <u>Order of precedence</u>. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 General. The individual item requirements shall be as specified in MIL-PRF-19500 and as modified herein.
- 3.2 <u>Qualification</u>. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturer's list (QML) before contract award (see 4.2 and 6.3).
- 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500 and as follows:

```
I<sub>AS</sub>...... Rated avalanche current, non-repetitive. nC ....... nano Coulomb.
```

- 3.4 <u>Interface and physical dimensions</u>. The interface and physical dimensions shall be as specified in <u>MIL-PRF-19500</u> and on figures 1 (TO-257AA) and 2 (U3, surface mount, TO-276AA) herein.
- 3.4.1 <u>Lead finish</u>. Lead finish shall be solderable in accordance with MIL-PRF-19500, MIL-STD-750, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2).
- * 3.4.2 <u>Internal construction</u>. Multiple chip construction shall not be permitted to meet the requirements of this specification.
- 3.5 <u>Electrostatic discharge protection</u>. The devices covered by this specification require electrostatic discharge protection.
- 3.5.1 <u>Handling</u>. MOS devices must be handled with certain precautions to avoid damage due to the accumulation of static charge. However, the following handling practices are recommended (see 3.5).
 - a. Devices should be handled on benches with conductive handling devices.
 - b. Ground test equipment, tools, and personnel handling devices.
 - c. Do not handle devices by the leads.
 - d. Store devices in conductive foam or carriers.
 - e. Avoid use of plastic, rubber, or silk in MOS areas.
 - f. Maintain relative humidity above 50 percent if practical.
 - g. Care should be exercised during test and troubleshooting to apply not more than maximum rated voltage to any lead.
 - h. Gate must be terminated to source, $R \le 100 \text{ k}\Omega$, whenever bias voltage is to be applied drain to source.
- 3.6 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.7 <u>Electrical test requirements</u>. The electrical test requirements shall be as specified in table I.
 - 3.8 Marking. Marking shall be in accordance with MIL-PRF-19500.
- 3.9 <u>Workmanship</u>. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance.

4. VERIFICATION

- 4.1 Classification of inspections. The inspection requirements specified herein are classified as follows:
 - a. Qualification inspection (see 4.2).
 - b. Screening (see 4.3).
 - c. Conformance inspection (see 4.4 and tables I and II).
- 4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500 and as specified herein.
- 4.2.1 <u>Group E qualification</u>. Group E inspection shall be performed for qualification or re-qualification only. In case qualification was awarded to a prior revision of the specification sheet that did not request the performance of table III tests, the tests specified in table III herein that were not performed in the prior revision shall be performed on the first inspection lot of this revision to maintain qualification.
- 4.2.1.1 <u>Single event effects (SEE)</u>. SEE shall be performed at initial qualification and after process or design changes which may affect radiation hardness (see table III and table IV). Upon qualification, manufacturers shall provide the verification test conditions from section 5 of method 1080 of MIL-STD-750 that were used to qualify the device for inclusion into section 6 of the performance specification sheet. End-point measurements shall be in accordance with table II. SEE characterization data shall be made available upon request of the qualifying or acquiring activity.

* 4.3 <u>Screening (JANS and JANTXV levels only)</u>. Screening shall be in accordance with table E-IV of MIL-PRF-19500, and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see table E-IV of	Measu	rement
MIL-PRF-19500) (1) (2)	JANS level	JANTXV level
(3)	Gate stress test (see 4.3.1)	Gate stress test (see 4.3.1)
(3)	Method 3470 of MIL-STD-750, E _{AS} (see 4.3.2)	Method 3470 of MIL-STD-750, E _{AS} (see 4.3.2)
(3) 3c	Method 3161 of MIL-STD-750, thermal impedance (see 4.3.3)	Method 3161 of MIL-STD-750, thermal impedance (see 4.3.3)
9	Subgroup 2 of table I herein; IGSSF1, IGSSR1, IDSS1	Not applicable
10	Method 1042 of MIL-STD-750, test condition B	Method 1042 of MIL-STD-750, test condition B
11	Subgroup 2 of table I herein; IGSSF1, IGSSR1, IDSS1, IDSS1, IDS(on)1, VGS(TH)1 $\Delta IGSSF1 = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta IGSSR1 = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta IDSS1 = \pm 10 \mu\text{A dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$	Subgroup 2 of table I herein; IGSSF1, IGSSR1, IDSS1, IDS(on)1, VGS(TH)1
12	Method 1042 of MIL-STD-750, test condition A	Method 1042 of MIL-STD-750, test condition A
13	Subgroups 2 and 3 of table I herein; $\Delta I_{GSSF1} = \pm 20$ nA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{GSSR1} = \pm 20$ nA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 10$ μA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 10$ μA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DS(0n)1} = \pm 20$ percent of initial value. $\Delta I_{DS(TH)1} = \pm 20$ percent of initial value.	Subgroup 2 of table I herein; $\Delta I_{GSSF1} = \pm 20$ nA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{GSSR1} = \pm 20$ nA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 10$ μ A dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 20$ percent of initial value. $\Delta I_{CS} = \pm 20$ percent of initial value.
17	For TO–257AA and TO-276AA packages: Method 1081 of MIL-STD-750 (see 4.3.4), Endpoints: Subgroup 2 of table I herein	For TO–257AA and TO-276AA packages: Method 1081 of MIL-STD-750 (see 4.3.4), Endpoints: Subgroup 2 of table I herein

- (1) At the end of the test program, $I_{\text{GSSF1}},\,I_{\text{GSSR1}},$ and I_{DSS1} are measured.
- (2) An out-of-family program to characterize I_{GSSF1}, I_{GSSR1}, I_{DSS1}, and V_{GS(th)1} shall be invoked.
 (3) Shall be performed anytime after temperature cycling, screen 3a; JANTXV does not need to be repeated in screening requirements.

- 4.3.1 Gate stress test. Apply VGS = 30 V minimum for t = 250 μ s minimum.
- 4.3.2 Single pulse avalanche energy (EAS).
 - a. Peak current (IAS).....IAS(max).
 - b. Peak gate voltage (VGS)......12 V.

 - d. Initial case temperature (T_C)+25°C +10°C, -5°C.
 - e. Inductance (L).... $\left\lceil \frac{2E_{\scriptscriptstyle AS}}{\left(I_{\scriptscriptstyle DI}\right)^2}\right\rceil \left[\frac{V_{\scriptscriptstyle BR}-V_{\scriptscriptstyle DD}}{V_{\scriptscriptstyle BR}}\right] \, \mathrm{mH \,\, minimum}.$
 - f. Number of pulses to be applied 1 pulse minimum.
 - g. Supply voltage (VDD)50 V.
- 4.3.3 <u>Thermal impedance</u>. The thermal impedance measurements shall be performed in accordance with method 3161 of MIL-STD-750 using the guidelines in that method for determining I_M , I_H , t_H , t_{SW} , (and V_H where appropriate). (See figure 4 herein.) Measurement delay time (t_{MD}) = 70 μ s max. See table III, group E, subgroup 4 herein.
- 4.3.4 <u>Dielectric withstanding voltage</u>.

 - b. Duration of application of test voltage......15 seconds (min).
 - c. Points of application of test voltage......All leads to case (bunch connection).
 - d. Method of connection......Mechanical.
 - e. Kilovolt-ampere rating of high voltage source......1,200 V/1.0 mA (min).
 - f. Maximum leakage current......1.0 mA.
 - g. Voltage ramp up time......500 V/second
 - 4.4 <u>Conformance inspection</u>. Conformance inspection shall be in accordance with MIL-PRF-19500, and as specified herein.
 - 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with table E-V of MIL-PRF-19500. End-point electrical measurements shall be in accordance with table I, subgroup 2 herein.
 - 4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VIA (JANS) and table E-VIB (JANTXV) of MIL-PRF-19500, and herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein.

4.4.2.1 Group B inspection, table E-VIA (JANS) of MIL-PRF-19500.

Subgroup	Method	Condition
В3	1051	Test condition G, 100 cycles.
В3	2075	See 3.4.2 herein.
В3	2077	Scanning electron microscope (SEM) qualification may be performed anytime prior to lot formation.
B4	1042	Condition D. No heat sink nor forced-air cooling on the device shall be permitted during the on cycle. The heating cycle shall be 60 seconds minimum.
B5	1042	Test condition B, V_{GS} = rated T_A = +175°C, t = 24 hours.
B5	1042	Condition A, V _{DS} = rated; T _A = +175°C; t = 120 hours.

4.4.2.2 Group B inspection, table E-VIB (JANTXV) of MIL-PRF-19500.

<u>Subgroup</u>	<u>Method</u>	Condition
B2	1051	Test condition G, 25 cycles. (45 total, including 20 cycles performed in screening)
В3	1042	Test condition D. No heat sink nor forced-air cooling on the device shall be permitted during the on cycle. The heating cycle shall be 60 seconds minimum.
B4	2075	See 3.4.2 herein.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VII of MIL-PRF-19500 and as follows. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein.

Subgroup	Method	Condition
C2	1056	Test condition B.
C2	2036	Test condition A, weight = 10 lbs (4.54 Kg), t = 10 s (applicable to TO-257AA only).
C5	3161	See 4.3.3, R $_{\theta JC}$ = 1.67 °C/W.
C6	1042	Test condition D, 6,000 cycles. No heat sink nor forced-air cooling on the device shall be permitted during the on cycle. The heating cycle shall be 60 seconds minimum.

- 4.4.4 <u>Group D Inspection</u>. Group D inspection shall be conducted in accordance with table E-VIII of MIL-PRF-19500 and table II herein.
- 4.4.5 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-IX of MIL-PRF-19500 and as specified in table III herein. Electrical measurements (endpoints) shall be in accordance with table I, subgroup 2 herein.
 - 4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified in the appropriate tables and as follows.
- 4.5.1 <u>Pulse measurements</u>. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.

* TABLE I. Group A inspection.

Inspection 1/		MIL-STD-750	Symbol	Limits		Unit
	Method	Method Conditions		Min	Min Max	
Subgroup 1						
Visual and mechanical inspection	2071					
Subgroup 2						
Thermal impedance 2/	3161	See 4.3.3	$Z_{ heta JC}$			°C/W
Breakdown voltage, drain to source 2N7465T3, U3 2N7466T3, U3	3407	$V_{GS} = 0$, $I_D = 1$ mA dc, bias condition C	$V_{(BR)DSS}$	400 500		V dc V dc
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS}$, $I_D = 1$ mA dc	V _{GS(TH)1}	2.5	4.5	V dc
Gate reverse current	3411	V_{GS} = +20 V dc bias condition C, V_{DS} = 0	I _{GSSF1}		+100	nA dc
Gate reverse current	3411	V_{GS} = -20 V dc, bias condition C, V_{DS} = 0	I _{GSSR1}		-100	nA dc
Drain current	3413	$V_{GS} = 0$, bias condition C, $V_{DS} = 80$ percent of rated V_{DS}	I _{DSS1}		50	μA dc
Static drain to source on-state resistance 2N7465T3, U3 2N7466T3, U3	3421	$V_{GS} = 12 \text{ V dc}$, condition A, pulsed (see 4.5.1), $I_D = I_{D2}$	r _{DS(on)} 1		1.39 1.77	$\Omega \ \Omega$
Static drain to source on-state resistance 2N7465T3, U3 2N7466T3, U3	3421	V_{GS} = 12 V dc, condition A, pulsed (see 4.5.1), I_D = I_{D1}	r _{DS(on)} 2		1.52 1.90	$\Omega \ \Omega$
Forward voltage	4011	Pulsed (see 4.5.1), $I_D = I_{D1}$, $V_{GS} = 0$	V_{SD}		1.2	V

See footnotes at end of table.

* TABLE I. <u>Group A inspection</u> - Continued.

Inspection 1/	MIL-STD-750		Symbol	ool Limits		Unit
	Method	Conditions		Min	Max	
Subgroup 3						
High-temperature operation:		$T_{C} = T_{J} = +125^{\circ}C$				
Gate reverse current	3411	V_{GS} = +20 V dc and -20 V dc, bias condition C, V_{DS} = 0	I _{GSS2}		±200	nA dc
Drain current	3413	$V_{GS} = 0$, bias condition C, $V_{DS} = 100$ percent of rated V_{DS}	I _{DSS2}		1.0	mA dc
Drain current	3413	V _{GS} = 0, bias condition C, V _{DS} = 80 percent of rated V _{DS}	I _{DSS3}		0.25	mA dc
Static drain to source on-state resistance	3421	$V_{GS} = 12 \text{ V dc}$, bias condition A, pulsed (see 4.5.1), $I_D = I_{D2}$	rDS(on)3			
2N7465T3, U3 2N7466T3, U3					2.64 3.76	$\Omega \ \Omega$
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS}$, $I_D = 1$ mA dc	V GS(TH)2	1.5		V dc
Low-temperature operation:		$T_C = T_J = -55^{\circ}C$				
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS}$, $I_D = 1$ mA dc	V GS(TH)3		5.5	V dc
Subgroup 4						
Forward transconductance 2N7465T3, U3	3475	$I_D = \text{rated } I_{D2}, V_{DD} = 15 \text{ V (see 4.5.1)}$	9FS	0.5		mhos
2N7466T3, U3				0.4		mhos
Switching time test	3472	$I_D = I_{D1}$, $V_{GS} = 12 \text{ V dc}$, $R_G = 7.5 \Omega$, $V_{DD} = 50$ percent of rated V_{DS}				
Turn-on delay time 2N7465T3, U3 2N7466T3, U3		orrated vDS	^t d(on)		25 25	ns ns
Rise time 2N7465T3, U3 2N7466T3, U3			t _r		75 65	ns ns

See footnotes at end of table.

* TABLE I. <u>Group A inspection</u> - Continued.

Inspection 1/	MIL-STD-750		Symbol	Lin	nits	Unit
	Method	Conditions		Min	Max	
Subgroup 4 - Continued						
Turn-off delay time 2N7465T3, U3 2N7466T3, U3			$t_{\text{d(off)}}$		58 60	ns ns
Fall time 2N7465T3, U3 2N7466T3, U3			t _f		58 63	ns ns
Subgroup 5						
Safe operating area test (high voltage)	3474	See figures 5 and 6; t_p = 10 ms, V_{DS} = 200 V				
Electrical measurements		See table I, subgroup 2 herein.				
Subgroup 6						
Not applicable						
Subgroup 7						
Gate charge 2N7465T3, U3 2N7466T3, U3	3471	Condition B	$Q_{G(\text{on})}$		31 30	nC nC
Gate to source charge 2N7465T3, U3 2N7466T3, U3			Q_{GS}		8.5 8	nC nC nC
Gate to drain charge 2N7465T3, U3 2N7466T3, U3			Q_{GD}		20 18	nC nC
Reverse recovery time	3473	Condition A, di/dt \leq 100A/ μ s, $V_{DD} \leq$ 50	t _{rr}			
2N7465T3, U3 2N7466T3, U3		$V, I_D = I_{D1}$			350 400	ns ns

For sampling plan, see MIL-PRF-19500.
This test required for the following end-point measurements only:
Group B, subgroups 2 and 3 (JANTXV).
Group B, subgroups 3 and 4 (JANS).
Group C, subgroup 2 and 6.
Group E, subgroup 1.

TABLE II. Group D inspection.

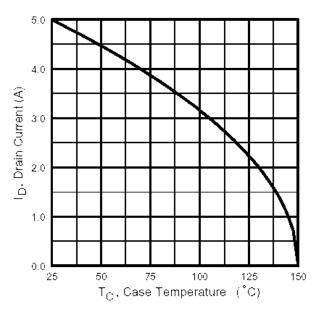
Inspection		MIL-STD-750	Symbol	Preirradia	tion limits	Postirradia	ation limits	Unit
<u>1</u> / <u>2</u> / <u>3</u> /	Method Conditions			R		F		
				Min	Max	Min	Max	
Subgroup 1								
Not applicable								
Subgroup 2		T _C = +25°C						
Steady-state total dose irradiation (V _{GS} bias) <u>4</u> /	1019	$V_{GS} = 12V dc$ $V_{DS} = 0$						
Steady-state total dose irradiation (V _{DS} bias) <u>4</u> /	1019	$V_{GS} = 0 \text{ V}$ $V_{DS} = 80 \text{ percent of }$ rated V_{DS} (pre- irradiation)						
End-point electricals:								
Breakdown voltage, drain to source	3407	$V_{GS} = 0 \text{ V}$ $I_D = 1 \text{ mA}$ bias condition C	$V_{(BR)DSS}$					
2N7465T3, U3 2N7466T3, U3				400 500		400 500		V dc V dc
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS}$	V _{GS(th)1}					
2N7465T3, U3 2N7466T3, U3				2.5 2.5	4.5 4.5	2.0 2.0	4.5 4.5	V dc V dc
Gate reverse current	3411	$V_{GS} = 20 \text{ V dc}$ $V_{DS} = 0$ bias condition C	I _{GSSF1}		100		100	nA dc
Gate reverse current	3411	$V_{GS} = -20 \text{ V dc}$ $V_{DS} = 0$ bias condition C	I _{GSSR1}		-100		-100	nA dc
Drain current	3413	V_{GS} = 0 V bias condition C V_{DS} = 80 percent of rated V_{DS} (pre-irradiation)	I _{DSS1}		50		50	μA dc

See footnotes at end of table.

TABLE II. Group D inspection - Continued.

Inspection	MIL-STD-750		Symbol	Preirradiation limits		Postirradiation limits		Unit
<u>1</u> / <u>2</u> / <u>3</u> /	Method	Conditions			1	R		
				Min	Max	Min	Max	
Static drain to source on-state voltage	3405	$V_{GS} = 12 \text{ V}$ condition A pulsed (see 4.5.1) $I_D = I_{D2}$	V _{DSon1}					
2N7465T3, U3 2N7466T3, U3 Forward voltage source to drain diode	4011	$V_{GS} = 0$ $I_D = I_{D1}$	V_{SD}		4.726 4.956 1.2		4.726 4.956 1.2	V dc V dc V dc

- For sampling plan, see MIL-PRF-19500.
- Group D qualification may be performed anytime prior to lot formation. Wafers qualified to these group D QCI requirements may be used for any other specification sheet utilizing the same die design.
- At the manufacturer's option, group D samples need not be subjected to the screening tests, and may be assembled in its qualified package or in any qualified package that the manufacturer has data to correlate the performance to the designated package. Separate samples shall be pulled for each bias.


TABLE III. Group E inspection (all quality levels) for qualification or re-qualification only.

Inspection	MIL-STD-750		Sample	
·	Method	Conditions	plan	
Subgroup 1			45 devices c = 0	
Thermal shock (temperature cycling)	1051	Test condition G, 500 cycles		
Hermetic seal Fine leak Gross leak	1071			
Electrical measurements		See table I, subgroup 2		
Subgroup 2 1/			45 devices c = 0	
Steady-state reverse bias	1042	Condition A, 1,000 hours		
Electrical measurements		See table I, subgroup 2		
Steady-state gate bias	1042	Condition B, 1,000 hours		
Electrical measurements		See table I, subgroup 2		
Subgroup 4			Sample size N/A	
Thermal impedance curves		See MIL-PRF-19500.	IN/A	
Subgroup 5			3 devices c = 0	
Barometric pressure (reduced) (all devices)	1001	V_{DS} = rated $V_{(BR)DSS}$, $I_{(ISO)}$ < 0.25 mA	C = 0	
Subgroup 10			22 devices	
Commutating diode for safe operating area test procedure for measuring dv/dt during reverse recovery of power MOSFET transistors or insulated gate bipolar transistors	3476	Test conditions shall be derived by the manufacturer.	c = 0	
Subgroup 11			3 devices	
SEE <u>2</u> / <u>3</u> /	1080	See MIL-STD-750 method 1080.		

^{1/} A separate sample for each test shall be pulled.

^{2/} Group E qualification of SEE testing may be performed prior to lot formation. Qualification may be extended to other specification sheets utilizing the same structurally identical die design.

^{3/} Device qualification to a higher level LET is sufficient to qualify all lower level LETs.

2N7465T3 and 2N7465U3

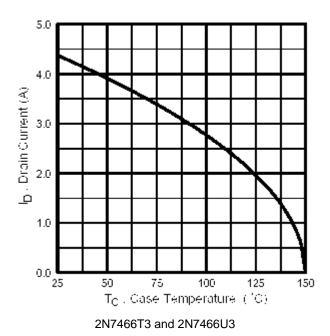
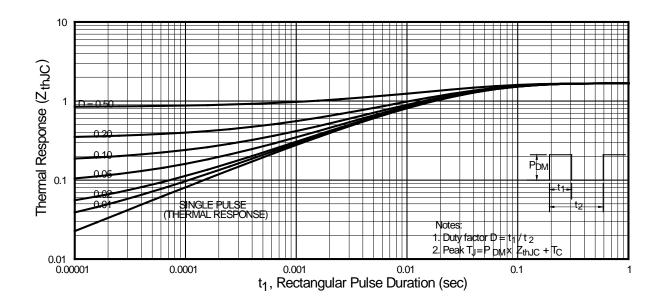
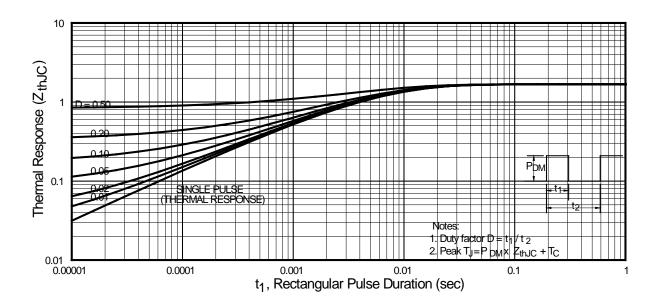




FIGURE 3. Maximum drain current and case temperature graphs.

2N7565T3 and 2N7566T3

FIGURE 4. Thermal impedance curves.

2N7565U3 and 2N7566U3

FIGURE 4. Thermal impedance curves – Continued.

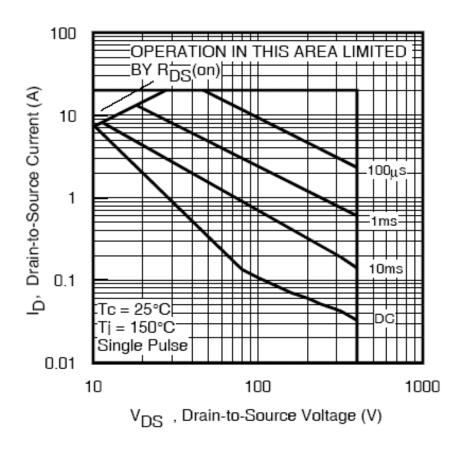


FIGURE 5. Safe operating area graph (2N7465T3 and 2N7465U3).

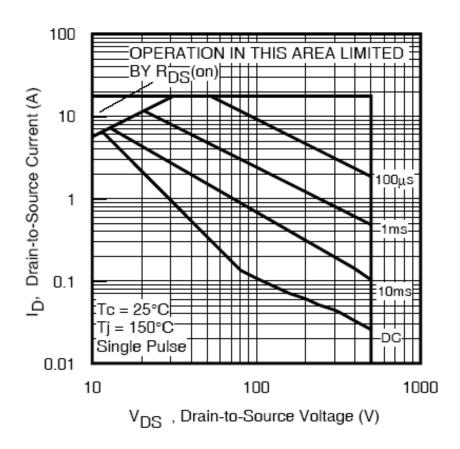


FIGURE 6. Safe operating area graph (2N7466T3 and 2N7466U3).

5. PACKAGING

5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activities within the Military Service or Defense Agency, or within the Military Service's system commands. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. The notes specified in MIL-PRF-19500 are applicable to this specification.)

- 6.1 <u>Intended use</u>. Semiconductors conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 <u>Acquisition requirements</u>. Acquisition documents should specify the following:
 - a. Title, number, and date of this specification.
 - b. Packaging requirements (see 5.1).
 - c. Lead finish (see 3.4.1).
 - d. Product assurance level and type designator.
 - e. For acquisition of RHA designated devices, table II, subgroup 1 testing of group D herein is optional. If subgroup 1 is desired, it should be specified in the contract or order.
 - f. If SEE testing data is desired, it should be specified in the contract or order.
 - g. If specific SEE characterization conditions are desired (see section 6.5 and table IV), manufacturer's CAGE code should be specified in the contract or order.
- 6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List (QML 19500) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime, ATTN: VQE, P.O. Box 3990, Columbus, OH 43218-3990 or e-mail vqe.chief@dla.mil. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at https://assist.dla.mil.

6.4 <u>Substitution information</u>. Devices covered by this specification are substitutable for the manufacturer's and user's Part or Identifying Number (PIN). This information in no way implies that manufacturer's PIN's are suitable for the military PIN.

Preferred types	Commercial PIN			
(military PIN)	TO-257AA	SMD.5		
2N7465T3, U3 2N7466T3, U3	IRHY7330CMSE IRHY7430CMSE	IRHNJ7330SE IRHNJ7430SE		

6.5 Application data.

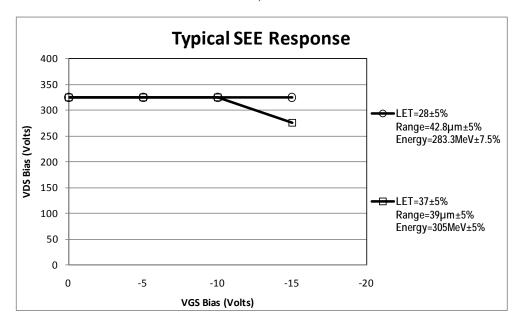

6.5.1 <u>Manufacturer specific irradiation data</u>. Each manufacturer qualified to this slash sheet has characterized its devices to the requirements of <u>MIL-STD-750</u> method 1080 and as specified herein. Since each manufacturer's characterization conditions can be different and can vary by the version of method 1080 qualified to, the <u>MIL-STD-750</u> method 1080 revision version date and conditions used by each manufacturer for characterization have been listed here (see <u>table IV</u>) for information only. SEE conditions and figures listed in section 6 are current as of the date of this specification sheet, please contact the manufacturer for the most recent conditions.

TABLE IV. Manufacturers characterization conditions.

Manufactures	Inspection	MIL-STD-750		
CAGE		Method Conditions		
69210 (Applicable to devices with a date code of February 1998 and older)	SEE 1/	1080	See MIL-STD-750E method 1080.0 dated 20 November 2006. See figure 7.	
and older)	Electrical measurements		I _{GSSF1} , I _{GSSR1} , and I _{DSS1} in accordance with table I, subgroup 2	3 devices
	SEE irradiation:		Fluence = 3E5 ±20 percent ions/cm ² Flux = 2E3 to 2E4 ions/cm ² /sec, temperature = 25° ±5 °C Surface LET = 28 MeV-cm ² /mg ±5.0 %, range = 42.8 µm ±7.5%,	
	2N7465T3 & 2N7465U3		energy = 283.3 MeV \pm 7.5% In-situ bias conditions: V_{DS} = 325 V and V_{GS} = -15 V (typical 4.53 MeV/nucleon at Brookhaven National Lab Accelerator)	
	2N7466T3 & 2N7466U3		In-situ bias conditions: $V_{DS} = 375 \text{ V}$ and $V_{GS} = -20 \text{ V}$ (nominal 4.53 MeV/nucleon at Brookhaven National Lab Accelerator)	
	2N7465T3 & 2N7465U3		Surface LET = 37 MeV-cm ² /mg ± 5.0 %, range = 39 μ m ± 7.5 %, energy = 305 MeV ± 7.5 % In-situ bias conditions: $V_{DS} = 325$ V and $V_{GS} = -10$ V $V_{DS} = 275$ V and $V_{GS} = -15$ V (nominal 3.77 MeV/nucleon at Brookhaven National Lab Accelerator)	
	2N7466T3 & 2N7466U3		In-situ bias conditions: $V_{DS} = 350 \text{ V}$ and $V_{GS} = -10 \text{ V}$ $V_{DS} = 325 \text{ V}$ and $V_{GS} = -15 \text{ V}$ $V_{DS} = 300 \text{ V}$ and $V_{GS} = -20 \text{ V}$ (typical 3.77 MeV/nucleon at Brookhaven National Lab Accelerator)	
	Electrical measurements		I_{GSSF1} , I_{GSSR1} , and I_{DSS1} in accordance with table I, subgroup 2	
Upon qu table.	alification, all mar	nufacture	rs should provide the verification test conditions to be added to the	nis

^{1/} I_{GSSF1}, I_{GSSR1}, and I_{DSS1} was examined before and following SEE irradiation to determine acceptability for each bias condition. Other test conditions in accordance with table I, subgroup 2, may be performed at the manufacturer's option.

2N7465T3, 2N7465U3

2N7466T3, 2N7466U3

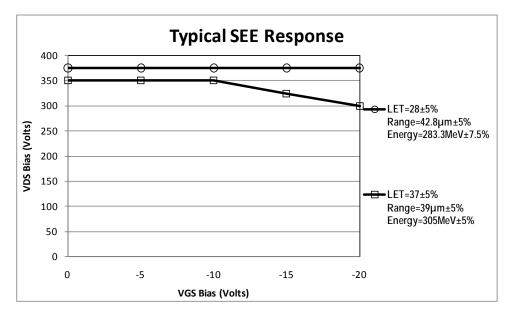


FIGURE 7. SEE safe operation area graph.

* 6.6 <u>Changes from previous issue</u>. The margins of this specification are marked with asterisks to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the previous issue.

Custodians: Army - CR Navy - EC Air Force - 85 NASA - NA DLA - CC Preparing activity: DLA - CC

(Project 5961-2014-072)

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at https://assist.dla.mil.